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The issue of angular distributions of the products of photodissociation of diatomic molecules is reexamined
on two aspects: (1) the nature of the state that is prepared by excitation from a bound level into a continuum,
and (2) a demonstration that a semiclassical connection between theJ-derivative of the scattering phase shift
and the classical deflection function leads to a recovery of the classical expression for correction of the
angular distribution owing to finite rotation of the molecule during photodissociation. Higher-order quantum
contributions to this correction also result from these observations.

I. Introduction

The original and still definitive work on the angular distribu-
tions of the fragments produced by photodissociation of diatomic
molecules is to be found in the Ph.D. thesis of R. N. Zare1 and
his subsequent publication based on that section of the thesis.2

Experimental realizations of the seminal ideas contained in
Zare’s work quickly began to appear.3-6 Within a very short
time, measurement of the angular distributions of photofrag-
ments became an essential in the experimentalists’ toolbox for
studying photodissociative reactions, and it remains so to the
present. It is not the intent of this short paper to review the
large literature touching on this subject but to comment on two
specific issues: (1) the nature of the state that is prepared by
excitation into a continuum, and (2) a semiclassical correction
for the effects of finite lifetime of the dissociating system and
the rotation of the dissociating molecule during the dissociation.
The latter point was covered in a classical treatment in Zare’s
original work, both for diatomics and for polyatomic molecules.
Jonah7 and Yang and Bersohn8 have also published classical
treatments of the finite lifetime/rotation corrections. Siebbeles
et al. showed the modifications to the theory for proper treatment
of homonuclear diatomics,9 and Glass-Maujean and Siebbeles10

have dealt with the angular distributions for excitation along a
Fano profile.

II. What Is Prepared in a Bound to Continuum
Transition?

This treatment is within the Born-Oppenheimer separation
of electronic and vib-rotational variables. We will work in
Hund’s case a11,12 and ignore electron spin. We will further
assume a transition from a single ground electronic state which
supports bound levels to a single excited electronic state with
continuum levels. With these assumptions, the total wave
function in the ground electronic state can be written as

Hereq is a collective electronic coordinate,R is the internuclear
distance;æ andθ are the usual spherical polar angles locating
the internuclear axis in space, andγ is a third Eulerian angle

specifying the orientation of the “lobe” of the electronic orbital
angular momentum wave function relative to the internuclear
axis. Alternatively,γ could be arbitrarily set to a fixed value
of 0 or π/2, in which case the normalization factor would be a
factor of x2π larger than in eq. 1.

The functionæ(g) is the electronic wave function andDΩ,M
J

the Wigner rotation matrix function.13 Equation 1 adopts the
“passive” rather than “active” convention for transformations
of coordinate systems.13,14 The vibrational wave function
satisfies a radial Schro¨dinger equation with the adiabatic Born-
Oppenheimer potentialVg(R) plus a centrifugal term
Vcent(R;J,Ω) that depends parametrically onJ andΩ:

where

EV,J is the energy of the level with vibrational quantum number
V and rotational quantum numberJ. In the ground electronic
state, levels with different values ofV andJ are spaced at discrete
intervals from each other.

For the electronically excited state, a similar Born-Oppen-
heimer expression of the total wave function as the product of
electronic, rotational, and radial parts is assumed. However,
all energies above the asymptote of the excited electronic state’s
Born-Oppenheimer potentialVex(R) are allowed. The wave
function for the excited molecule can be written as

The radial Schro¨dinger equation for this continuum case
becomesΨg(q,R,Ω) ) φ

(g)(q;R)R-1ψV,J(R) (2J + 1

8π2 )1/2
DΩ,M

J (γ,θ,æ)

(1)

[- p2

2µ
d2

dR2
+ Vg(R) + Vcent(R;J,Ω) - EV,J]ψV,J(R) ) 0 (2)

Vcent(R;J,Ω) )
p2[J(J + 1) - Ω2]

2µR2
(3)

Ψex ) φ
(ex)(q;R)R-1uk,J′(R)(2J′ + 1

8π2 )1/2
DΩ′,M′

J′ (γ,θ,æ) (4)

[- p2

2µ
d2

dR2
+ Vex(R) + Vcent(R;J′,Ω′) - p2k2

2µ
-

Vex(R)∞)]uk,J′(R) ) 0 (5)
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The zero of potential energy in this equation is taken to be the
minimum of the ground-state Born-Oppenheimer potential, as
it is in eq 2. The quantitypk is the relative momentum of the
two atoms at infinite separation in the upper electronic state.

In the asymptotic region, whenVex(R) - Vex(R)∞) and
Vcent(R;J′,Ω′) become negligible,uJ′,k(R) becomes a linear
combination of sin(kR) and cos(kR), which we will express as

whereηJ′ is the scattering phase shift.
This brings us to the question posed in the header of this

section: What is prepared in a bound to continuum transition?
Most discussions of spectroscopic absorption deal with bound-
to-bound transitions, and we are used to thinking that absorption
of radiation of the resonant frequency for the transition of one
bound state to another bound state results in a preparation of
the system in the upper eigenstate. It is very tempting to assume
by analogy that in a bound-to-continuum transition one prepares
the continuum eigenfunction. That is, the “vibrational” part of
the prepared state would be proportional to the solution of eq
5. However, this cannot be the case. TheuJ′,k(R) function in
eq 5 has exactly equal incoming and outgoing flux densities of
atoms. Otherwise it could not be a stationary state. The actual
situation, however, is that we observeonly outgoing flux and
no incoming flux at any value ofR.

For the state prepared when the molecule, originally in the
ground vibrational state of the lower electronic state, has been
exposed to a radiation field of amplitudeF0 for a timeT, the
correct answer, to first order in the interaction between the
radiation field and the molecule, is15

whereæV,J,J′(R,t) is a time-dependent wavepacket moving under
the influence of theexcitedelectronic state potentialHex,J′:

Hereµg,ex(R) is thetransition momentfor the transition between
the two relevant electronic states,ê is a unit vector parallel to
the polarization of the electromagnetic field, andψV,J(R) is the
solution to eq 2 for theVth vibrational level of theinitial
electronic state for angular momentumJ (usually V ) 0 for
photodissociation experiments). Note the subscriptJ′ in eqs 7
and 8 to remind us that the propagating excited state Hamiltonian
includes the centrifugal effective potential for the value ofJ′
that is excited. In the limit thatT f ∞, øV,J,J′(R,T) is (up to an
overall phase) the quantity that Heller and others15,16-20 have
called the “Raman wave function.”If the upper electronic state
has bound eigenstates, and the frequency of the radiation is
resonant for excitation of one of these,øV,J,J′(R,T) comes to look
more and more like the eigenfunction for this bound vibrational
state asT gets large. This is beautifully demonstrated in the
work of Williams and Imre.20 Thus, the conventional inter-
pretation is correct for bound-to-bound transitions.

Bound-to-continuum transitions are different. Theimaginary
part of the Raman wave function approaches the continuum
eigenfunction (a standing wave) for largeT, but there is an
equally importantreal part, which is the Hilbert transform of
the imaginary part. The imaginary part oføV,J,J′(R,T) behaves
like sin(kR- J′π/2 + ηJ′) for largeR, and the real part behaves
like cos(kR- J′π/2 + ηJ′). Hence, the asymptotic behavior of
the prepared state is

wherefJ′ is the asymptotic amplitude ofø0,J,J′(R,T). As required,
this function has outgoing flux density and no incoming flux
density. It is a traveling wave. It isnot the solution of the
radial Schro¨dinger equation. This is not a new observation,
but it seems to be an issue on which there is so much confusion
and error that it is worthwhile stating.

III. General Expression for Angular Distributions of
Photoproducts

The foregoing discussion was essentially a vibrational treat-
ment, with the angular behavior left offstage. In actuality,
starting from an initial state of angular momentumJ, the
radiation field coherently prepares amplitudes in electronically
excited states withJ′ equal toJ - 1, J, andJ + 1 (P, Q, and
R amplitudes, respectively). In general, there will be three
slightly different wave packets (because of the differences in
the effective centrifugal terms in their driving Hamiltonians)
whose half-Fourier transforms will yield slightly different
vibrational amplitudesfJ′. Since all the phase information is
incorporated into the phase shifts, the amplitudesfJ′ are real
and nonnegative. The asymptotic behavior of the three wave
packets is embodied in the amplitudesfJ′ and phase shiftsηJ′,
which provide the ingredients for calculatingany property of
the excited system in the asymptotic region, including “correc-
tions” to the angular distribution expression for finite rotation
of the molecule during the process. Beginning with the original
work of Zare, there have been many theoretical treatments of
the angular distribution of photodissociation products2,7-10,19,21-24

Our purpose in this section is to show expressions for the angular
distributions in terms of the amplitudes and phases, including
a connection with the semiclassical deflection function familiar
from scattering theory.

For plane polarized light, the space-fixedz-axis can be taken
to be the direction of polarization, so that only the space-fixed
z-component of the transition matrix is needed. This space-
fixed component can be related to body-fixed components by
Wigner rotation matrices of order 1.13

With incorporation of the angular momentum (including the
effect of the vector nature of the transition moment as expressed
through its transition from body-fixed to space-fixed compo-
nents), the expression for the state prepared in the absorption
process becomes

In this equation the (spherical basis) componentp of the
transition moment is determined by the values ofΩ andΩ′ for
the participating electronic states:p ) 0 for parallel transitions
andp ) +1 or -1, depending on whetherΩ′ ) Ω + 1 or Ω′
) Ω - 1, respectively, for perpendicular transitions (Ω andΩ′
are by convention nonnegative numbers). In any event, only a
single componentp will play a role in the transition between
any two specified electronic states.25 In eq 10, theT dependence
of ø0,J,J′(R,T) has been suppressed. It is understood thatT is
much longer than the travel time of the wave packet through
the region where the potential is significant, in which case the

uJ′,k(R) ∼ sin(kR- J′π/2 + ηJ′) (6)

øV,J,J′(R,T) )
iF0

2p
∫0

T
dt exp[i(t - T)ω]æV,J,J′(R,t) (7)

æV,J,J′(R,t) ) exp(-iHex,J′t/p)ê‚µg,ex(R) ψV,J(R) (8)

øV,J,J′(R,T) ∼ fJ′exp[i(kR- J′π/2 + ηJ′)] (9)

Φex,prepared) φ
(ex)(q;R)R-1∑

J′
ø0,J,J′(R)(-1)M+Ω′ ×

[(2J′ + 1)(2J + 1)]1/2(J′ 1 J
-Ω′ p Ω ) ×

(J′ 1 J
-M 0 M )(2J′ + 1

8π2 )1/2

DΩ′,M
J′ (γ,θ,æ) (10)
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result does not depend significantly onT. The quantities

etc., are Wigner 3j symbols.
The angular distribution of atoms at a detector very far from

the interaction region is obtained for eachJ andM by calculating
the flux density-ip[Ψ*(∂Ψ/∂R) - Ψ(∂Ψ*/∂R)] for Ψ the
Φex,preparedof eq 10. The quantity must then be averaged over
a uniform (isotropic) distribution ofM’s to get the observed
angular distribution for the given initial value ofJ:

This can be simplified by the following two identities:13,14

The quantity in curly brackets is the Wigner 6j symbol andPK

is the Legendre polynomial of orderK. Introducing these into
the result of eq 11 yields

Because of the appearance of the 3j symbol

in this expression, onlyP0 ()1) andP2 terms appear in the
angular distribution of the photoproducts, giving the familiar
result that

with 2 g â g -1. This simple form is the result of averaging
over an isotropic initial distribution in the magnetic quantum
numberM. Photodissociation from an ensemble with a noniso-

tropic distribution ofM’s could lead to a far more complex
angular distribution.

All the interesting information about photodissociation dy-
namics is contained in the parameterâ. As shown in Zare’s
original work, the prediction from classical mechanics for
negligible rotation of the molecule during the dissociation
process (pure axial recoil) isâ ) 2 for a parallel transition and
â ) -1 for a perpendicular transition.2 This classical analysis
was also extended to provide a correction for the finite rotation
of the system during the dissociation in terms of an angle
designated asθmax by Zare2 but which we will call θrot,J (see
Figure 1):

where â0 is the appropriate uncorrected value (+2 or -1,
respectively, for parallel or perpendicular transitions). Of
course,âcorrecteddepends onJ through theJ-dependence ofθrot,J.

Equation 14 is the most general expression possible for the
angular distribution of photoproducts under the very general
assumptions stated (Born-Oppenheimer approximation, etc.).
All effects such as finite lifetime relative to rotation time must
be somehow expressible in the relative values of the different
fJ′ and in the phase shifts.

Because of the

term in eq 14, there are no cross terms between P, Q, and R
transitions inσV,J

0 . In general,σV,J
2 has cross terms involving

the phase shifts. These cross terms will be proportional to cos-
(J2π/2 - J1π/2 + ηJ1 - ηJ2). It is expedient at this point to
make a further approximation:

so that the argument of the cosine in the cross terms becomes

(J′ 1 J
-M 0 M )

σV,J ) ∑
J1,J2,M

(J1 1 J
-Ω′ p Ω )(J2 1 J

-Ω′ p Ω ) ×

(J1 1 J
-M 0 M )(J2 1 J

-M 0 M )(2J1 + 1)(2J2 + 1)fJ1
fJ2

×

exp[i(J2π

2
-

J1π

2
+ ηJ1

- ηJ2)]DΩ′,M
J1 DΩ′,M

/J2 (11)

DΩ′,M
J1 DΩ′,M

/J2 )

∑
K

(2K + 1)(J1 J2 K
Ω′ -Ω′ 0 )(J1 J2 K

M -M 0 )PK(cosθ)

(12)

∑
M

(-1)M(J1 J2 K
M -M 0 )(J 1 J1

-M 0 M ) ×

(J 1 J2

-M 0 M ) ) (-1)J(K 1 1
0 0 0){K 1 1

J J1 J2
} (13)

σV,J ) ∑
K

(2K + 1)(-1)J(K 1 1
0 0 0)PK(cosθ) ×

∑
J1,J2

(2J1 + 1)(2J2 + 1)fJ1
fJ2

exp[i(J2π

2
-

J1π

2
+ ηJ1

- ηJ2)] ×

(-1)Ω′{K 1 1
J J1 J2

}(J1 J2 K
Ω′ -Ω′ 0 )(J1 1 J

-Ω′ p Ω ) ×

(J2 1 J
-Ω′ p Ω ) (14)

(K 1 1
0 0 0)

σV,J(θ) ) σV,J
0 + σV,J

2 P2(cosθ) ) σV,J
0 [1 + âP2(cosθ)] (15)

Figure 1. Sketch of trajectory of a projectile atom (small circle)
scattering from a stationary target atom (large circle). The dashed line
slanting from lower left to upper right is the trajectory in the absence
of any interaction between the two atoms. The dashed line slanting
from upper left to lower right indicates the asymptote of the actual
trajectory. The angle between these two dashed lines is,as indicated,
the deflection functionøscat. If, instead of asking how much the trajectory
has been deflected from an unimpeded straight line, we ask how much
the diatomic system has rotated during this collision, the answer isπ
- øscat. This is twice the angle we have defined in the text asθrot,J. As
shown in the figure, the system rotatesθrot,J in the first half of the
collision and anotherθrot,J in the second half. In a photodissociation,
the trajectory initiates at the configuration in which the atoms are shown
in the figure, and the amount of rotation from the initial orientation of
the molecule isoneθrot,J.

âcorrected) â0P2(cosθrot,J) (16)

(J1 J2 K
Ω′ -Ω′ 0 )

ηJ1
- ηJ2

≈ (J1 - J2)(∂ηJ/∂J) (17)
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(J1 - J2)(∂ηJ/∂J - (π/2)). We further introduce the semiclas-
sical relation between theJ derivative of the phase shift and
the classical deflection functionøJ:26

As shown in Figure 1,øJ is the angle ofdeflection in the
atomic collision at an impact parameter appropriate to the
value ofJ. The angle ofrotation of the diatomic system in the
course of this full collision event isπ - øJ, and this is twice
the angle of rotation of the diatom in the “half-collision” of a
photodissociation, the angle we have calledθrot,J! Hence, a
semiclassical connection has been made between scattering
theory and the phase of the cos in the cross terms inσV,J

2 . The
P-Q and Q-R cross terms inσV,J

2 will be proportional to
cos(θrot,J) ) P1(θrot,J). The P-R cross term will be propor-
tional to cos(2θrot,J), which can be expressed as [4P2(cos
θrot,J) - 1]/3.

The dependence offJ′ on J′ cannot be expected to have an
analog in scattering theory. It is determined by the asymptotic
behavior of the half-Fourier transforms of three wave packets
moving under slightly different effective potentials. These, in
turn, are dependent on the shape of the product of the initial
vibrational wave function and the transition moment, not
scattering quantities. The expressions can be simplified, how-
ever, by approximating theJ′ dependence offJ′ by the first two
terms in a power series aboutJ′ ) J. In that case, without loss
of generality as far as the shape of the angular distribution is
concerned, we can takefP ) 1 - ∆, fQ ) 1, fR ) 1 + ∆, where
fQ∆ ) (∂f/∂J)Q.

This has brought us about as far as one can go without
specializing to either a parallel or a perpendicular transition.

IV. Angular Distributions for a Parallel Transition

For a parallel transition

The asymmetry parameterâ is the ratioσV,J
2 /σV,J

0 . This is a
distressingly complex expression in its full generality. It
simplifies greatly, however, if all the amplitudes are assumed
to be equal. In that case, we obtain

The leading term is exactly Zare’s expression for the anisotropy
parameter for a parallel transition, including his correction for
finite rotation of the molecule during the dissociation. Since
Ω is usually much smaller than a typicalJ, the remaining terms
areO(J-2) or higher.

Alternatively, we can express the anisotropy parameter as a
series in the parameter∆ and in 1/(2J + 1). This yields the
following results:

V. Angular Distributions for a Perpendicular Transition

When the transition moment is perpendicular to the inter-
nuclear axis, the indexp of eq 14 has the value 1 or-1,
according to whetherΩ′ ) Ω + 1 or Ω′ ) Ω -1, respectively.
We will treat only thep ) 1 case here. The general expressions
for σV,J

0 andσV,J
2 are

øJ ) 2(∂ηJ/∂J) (18)

σV,J
0 )

fP
2(J2 - Ω2)

3J(2J + 1)
+

fQ
2Ω2

3J(J + 1)
+

fR
2[(J + 1)2 - Ω2]

3(J + 1)(2J + 1)
(19)

σV,J
2 )

fP
2(J2 - Ω2)(J2 - J - 3Ω2)

3J2(2J + 1)2
+

fQ
2Ω2(J2 + J - 3Ω2)

3J2(J + 1)2
+

fR
2[(J + 1)2 - Ω2)][(J + 1)(J + 2) - 3Ω2)]

3(J + 1)2(2J + 1)2
-

2fPfR[(J2 - Ω2)][(J + 1)2 - Ω2)]

3J(J + 1)(2J + 1)2
+

2Ω2P1(cosθrot,J)

J(J + 1)(2J + 1)[fPfQ(J2 - Ω2)

J
+

fQfR[(J + 1)2 - Ω2]

J + 1 ] +

P2(cosθrot,J)
8fPfR(J2 - Ω2)[(J + 1)2 - Ω2]

3J(J + 1)(2J + 1)2
(20)

âJ ) 2P2(cosθrot,J)[1 - 1

(2J + 1)2
+

4Ω4 - 4Ω2(2J2 + 2J + 1)

J(J + 1)(2J + 1)2 ] +

6P1(cosθrot,J)Ω
2(J2 + J - Ω2)

J2(J + 1)2
+ 2

(2J + 1)2
-

2Ω2(4J2 + 4J - 1)

J(J + 1)(2J + 1)2
+

2Ω4(8J2 + 8J + 3)

J2(J + 1)2(2J + 1)2
(21)

âJ ) 2P2(cosθrot,J) +
4∆(1 - P2)

2J + 1
- ∆2(4P2 - 1) +

1

(2J + 1)2
[- 8Ω2 + 2 + 24Ω2P1 - (16Ω2 + 2)P2] +

∆2

(2J + 1)2
[-4Ω2 - 9 - 24Ω2P1 + (40Ω2 +

12)P2] + O( ∆
(2J + 1)3) + O( ∆3

(2J + 1)) (22)

σV,J
0 )

fP
2(J - Ω)(J - Ω - 1)

6J(2J + 1)
+

fQ
2(J - Ω)(J + Ω + 1)

6J(J + 1)
+

fR
2(J + Ω + 1)(J + Ω + 2)

6(J + 1)(2J + 1)
(23)

σV,J
2 )

fP
2(J - Ω)(J - Ω - 1)[J2 - J - 3(Ω + 1)2]

6J2(2J + 1)2
-

fQ
2(J - Ω)(J + Ω + 1)[J2 + J - 3(Ω + 1)2]

6J2(J + 1)2
+

fR
2(J + Ω + 1)(J + Ω + 2)(J2 + 3J - 3Ω2 - 6Ω - 1)

6(J + 1)2(2J + 1)2
+

fPfR(J - Ω - 1)(J - Ω)(J + Ω + 1)(J + Ω + 2)

3J(J + 1)(2J + 1)2
+

P1(cosθrot,J)fQ(J + Ω + 1)(Ω + 1)(J - Ω)

J(J + 1)(2J + 1) [fP(J - Ω - 1)

J
-

fR(J + Ω + 2)

J + 1 ] -

4P2(cosθrot,J)fPfR(J + Ω + 1)(J + Ω + 2)(J - Ω)(J - Ω - 1)

3J(J + 1)(2J + 1)2

(24)
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This completely general expression for theâ parameter is
even more complicated in form than in the case of the parallel
transition. As previously, approximatingfP, fQ, andfR as 1-
∆ 1, and 1+ ∆ leads to a series expansion in powers of∆ and
inverse powers of (2J + 1) with relatively simple leading terms:

WhenP1 or P2 appears without explicit argument, the argument
is understood to beθrot,J.

As in the case of the parallel transition, the leading term of
this expansion recaptures the classical result of Zare, including
the correction for rotation of the molecule during the dissocia-
tion.

VI. Summary and Discussion

In this paper, we have not attempted to treat theâ parameter
for excitation of a thermal distribution of rotational levels. To
accomplish this, one would have to average the expressions in
eqs 19 and 20 over a Boltzman distribution, a task complicated
by the presence of theP1(cosθrot,J) andP2(cosθrot,J) terms.

For a specificJ, we have established a semiclassical con-
nection between the classical correction for rotation of the
system during the half-collision. This correction factor,P2(cos
θrot,J), will be unity when the rotation angle is near zero. This
will typically occur for the smallest values ofJ, for which the
classical deflection function is nearπ, i.e., when the phase shifts
of neighboring partial waves differ by approximatelyπ/2, not
when the difference in phase shifts is small. For very largeJ,
the classical deflection function approaches zero, in which case
the half-collision rotation angleθrot,J approachesπ/2. That is,
theâ for a parallel transition approaches the value-1 for very
largeJ, and that for a perpendicular transition approaches+1/2,
thus making the rotationally corrected parallel result look like
the uncorrected perpendicular result! The switching of roles
between corrected and uncorrectedâ’s is not as striking in the
case of a perpendicular transition, but the corrected result is,
even so, closer to that predicted for an uncorrected parallel
transition. This is a consequence of fact that the tangential
component of velocity for a rotating molecule with sufficiently
high angular momentum dominates over the axial recoil velocity.
Although this limit is somewhat surprising, it obtains for the
classical correction functions forâ as well. Fortunately, one
seldom deals with extremely large values ofJ in a spectroscopic
study. The range ofJ’s in a spectroscopic experiment is
determined byBJ(J + 1) ∼ kT, whereB is the rotational constant
for the initial vibrational level of the ground electronic state. In
contrast, the range ofJ in a scattering experiment is determined
by J ∼ b‚k, whereb is the order of the range of the potential
andpk is the momentum.

In the developments in this paper, there has been no
transformation from a body-fixed coordinate system determined
by the relativepositionof the two nuclei to one determined by
their relative momentum. This is permissible since all the

questions asked about the angular distribution are posed in the
asymptotic region, very far from the region of interaction. In
that limit these two coordinate systems coincide. For polyatomic
molecules this simplification is not possible. However, our
recovery of Zare’s correction for rotation during dissociation
in the diatomic case lends strong support for the use of his
correction formulas for polyatomic molecules. Section II is also
relevant to polyatomics. The state of a polyatomic molecule
that is prepared in a photodissociation is again the half-Fourier
transform of a wave packet, initially determined by the ground-
state ro-vibrational wave function, and propagated by the
Hamiltonian of the electronically excited state. As in the case
of the diatomic molecule, this prepared state isnot one of the
stationary continuum states for that Hamiltonian. In the case
of the diatomic, we have seen that the angular distribution, at
least to the lowest order in our expansion, is determined by the
location of the transition moment in the body-fixed axis system
and by the scattering phase shifts. It is not likely that a similar
result will follow in terms of the S-matrix for scattering of the
products in the electronically excited state. The transformed
wave packet will produce S-matrix-like quantities that give the
fluxes into various channels in the photodissociation. However,
the actual S-matrix is designed to give the outgoing fluxes in
different channels when the incoming fluxes are determined by
incoming scattering conditions,not by mapping onto boundary
conditions in the interaction region determined by the shape of
the ground-state vibrational wave function. Knowing only the
S-matrix elements (which describe the incoming and outgoing
fluxes in the asymptotic region only) does not provide enough
information in itself for satisfying these spectroscopic boundary
conditions.
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