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Angular Distributions of Products in the Photodissociation of Diatomic Molecules
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The issue of angular distributions of the products of photodissociation of diatomic molecules is reexamined
on two aspects: (1) the nature of the state that is prepared by excitation from a bound level into a continuum,
and (2) a demonstration that a semiclassical connection betwedrdtrérative of the scattering phase shift

and the classical deflection function leads to a recovery of the classical expression for correction of the
angular distribution owing to finite rotation of the molecule during photodissociation. Higher-order quantum
contributions to this correction also result from these observations.

I. Introduction specifying the orientation of the “lobe” of the electronic orbital
angular momentum wave function relative to the internuclear

The original and still definitive work on the angular distribu- axis. Alternatively.y could be arbitrarily set to a fixed value

tions of the fragments produced by photodissociation of diatomic . . )
molecules is to be found in the Ph.D. thesis of R. N. Zared of 0 or /2, in which case the normalization factor would be a
his subsequent publication based on that section of the thesis. factor Of@ larger than in eq. 1. _ S
Experimental realizations of the seminal ideas contained in  The functiong(@ is the electronic wave function aridy,
Zare's work quickly began to appet® Within a very short ~ the Wigner rotation matrix functiok? Equation 1 adopts the
time, measurement of the angular distributions of photofrag- “Passive” rather than "active” convention for transformations
ments became an essential in the experimentalists’ toolbox forOf coordinate systemé: The vibrational wave function
studying photodissociative reactions, and it remains so to the Satisfies a radial Schdinger equation with the adiabatic Befn
present. It is not the intent of this short paper to review the OPpenheimer potentialVy(R) plus a centrifugal term
large literature touching on this subject but to comment on two Veen(R;J,€2) that depends parametrically drand €2:

specific issues: (1) the nature of the state that is prepared by 5 o

excitation into a continuum, and (2) a semiclassical correction | _ A d + V(R + Vo (RIQ) — E |y, (R =0 (2)

for the effects of finite lifetime of the dissociating system and ugrr ° een i

the rotation of the dissociating molecule during the dissociation.

The latter point was covered in a classical treatment in Zare's Where

original work, both for diatomics and for polyatomic molecules. ) )

Jonaff and Yang and Bersofihave also published classical V. (RIQ) = ATI0+ 1) — Q1 3)
treatments of the finite lifetime/rotation corrections. Siebbeles centim 2uR?

et al. showed the modifications to the theory for proper treatment

of homonuclear diatomicsand Glass-Maujean and Siebbéfes  E, ;is the energy of the level with vibrational quantum number
have dealt with the angular distributions for excitation along a v and rotational quantum numbér In the ground electronic

Fano profile. state, levels with different values ofandJ are spaced at discrete
intervals from each other.

Il. What Is Prepared in a Bound to Continuum For the electronically excited state, a similar Be@ppen-

Transition? heimer expression of the total wave function as the product of

electronic, rotational, and radial parts is assumed. However,

This treatment is within the BornOppenheimer separation . ) . ,
all energies above the asymptote of the excited electronic state’s

of electronic and vib-rotational variables. We will work in ) )
Hund’s case &2 and ignore electron spin. We will further Born_—Oppenhelmer_ potentiale(R) are allowed. The wave
assume a transition from a single ground electronic state which lUnction for the excited molecule can be written as
supports bound levels to a single excited electronic state with ., 27 + 1\12
continuum levels. With these assumptions, the total wave W, = ¢®(qGRR Uker(R)( > )
function in the ground electronic state can be written as 87

Dgz',M'(yvgan) (4)

The radial Schidinger equation for this continuum case

_ 2]+ 1\12
¥ (qRQ) = o YqGRR 'y, (R (W) DY u(7.0.0) becomes
@) K o on _ hK
- Z_RZ + Vex(R) + VcenKR;‘J ,$2 ) - ﬂ -
Hereq s a collective electronic coordinate,s the internuclear d

distancejp and@ are the usual spherical polar angles locating

the internuclear axis in space, apds a third Eulerian angle Vex(R:m)] Uey(R) =0 (5)
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The zero of potential energy in this equation is taken to be the
minimum of the ground-state BorrfOppenheimer potential, as
itis in eq 2. The quantityik is the relative momentum of the
two atoms at infinite separation in the upper electronic state.

In the asymptotic region, wheNe(R) — Ve R=») and
Veen(R;J',Q2") become negligible,uy (R) becomes a linear
combination of sirKR) and coskR), which we will express as

Uy (R) ~ sinkR — J'7/2 + n;) (6)
whereny is the scattering phase shift.

This brings us to the question posed in the header of this
section: What is prepared in a bound to continuum transition?
Most discussions of spectroscopic absorption deal with bound-
to-bound transitions, and we are used to thinking that absorption
of radiation of the resonant frequency for the transition of one
bound state to another bound state results in a preparation o

the system in the upper eigenstate. It is very tempting to assume

by analogy that in a bound-to-continuum transition one prepares
the continuum eigenfunction. That is, the “vibrational” part of
the prepared state would be proportional to the solution of eq
5. However, this cannot be the case. The&(R) function in

eq 5 has exactly equal incoming and outgoing flux densities of
atoms. Otherwise it could not be a stationary state. The actual
situation, however, is that we obserealy outgoing flux and

no incoming flux at any value dr.

For the state prepared when the molecule, originally in the
ground vibrational state of the lower electronic state, has been
exposed to a radiation field of amplitud® for a time T, the
correct answer, to first order in the interaction between the
radiation field and the molecule, 18

iF
103 RT) =22 [ dtexpit ~ Dalg, RO (7)

whereg, ;7(R;t) is a time-dependent wavepacket moving under
the influence of theexcitedelectronic state potentiddexy:

©u03(RY) = exp(iHe )& ug (R v, ((R) - (8)

HereuyeXR) is thetransition momentor the transition between
the two relevant electronic statesis a unit vector parallel to
the polarization of the electromagnetic field, apgy(R) is the
solution to eq 2 for thesth vibrational level of theinitial
electronic state for angular momentuim(usually v = O for
photodissociation experiments). Note the subsctijm eqs 7
and 8 to remind us that the propagating excited state Hamiltonian
includes the centrifugal effective potential for the valueJof
that is excited. In the limit thal — oo, %, 35(RT) is (up to an
overall phase) the quantity that Heller and othet$2° have
called the “Raman wave function.If the upper electronic state

has bound eigenstates, and the frequency of the radiation is

resonant for excitation of one of thege, (R T) comes to look
more and more like the eigenfunction for this bound vibrational
state asT gets large. This is beautifully demonstrated in the
work of Williams and Imre® Thus, the conventional inter-
pretation is correct for bound-to-bound transitions.

Bound-to-continuum transitions are different. Tihmginary
part of the Raman wave function approaches the continuum
eigenfunction (a standing wave) for larde but there is an
equally importantreal part, which is the Hilbert transform of
the imaginary part. The imaginary part pf;y(R,T) behaves
like sin(kR— J'x/2 + ny) for largeR, and the real part behaves
like coskR — J7/2 + ny). Hence, the asymptotic behavior of
the prepared state is
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wherefy is the asymptotic amplitude gf;3(RT). As required,

this function has outgoing flux density and no incoming flux
density. It is a traveling wave. It isot the solution of the
radial Schrdinger equation. This is not a new observation,
but it seems to be an issue on which there is so much confusion
and error that it is worthwhile stating.

Zosy(RT) ~ Lyexpli(kR— I + 17,)]

[ll. General Expression for Angular Distributions of
Photoproducts

The foregoing discussion was essentially a vibrational treat-
ment, with the angular behavior left offstage. In actuality,
starting from an initial state of angular momentuin the
radiation field coherently prepares amplitudes in electronically

fexcited states witl' equal toJ — 1, J, andJ + 1 (P, Q, and

R amplitudes, respectively). In general, there will be three
slightly different wave packets (because of the differences in
the effective centrifugal terms in their driving Hamiltonians)
whose half-Fourier transforms will yield slightly different
vibrational amplitudedy. Since all the phase information is
incorporated into the phase shifts, the amplituflesre real
and nonnegative. The asymptotic behavior of the three wave
packets is embodied in the amplitudgsand phase shiftgy,
which provide the ingredients for calculatirgy property of

the excited system in the asymptotic region, including “correc-
tions” to the angular distribution expression for finite rotation
of the molecule during the process. Beginning with the original
work of Zare, there have been many theoretical treatments of
the angular distribution of photodissociation prodi6ty?19.2+-24

Our purpose in this section is to show expressions for the angular
distributions in terms of the amplitudes and phases, including
a connection with the semiclassical deflection function familiar
from scattering theory.

For plane polarized light, the space-fixedxis can be taken
to be the direction of polarization, so that only the space-fixed
z-component of the transition matrix is needed. This space-
fixed component can be related to body-fixed components by
Wigner rotation matrices of order’$.

With incorporation of the angular momentum (including the
effect of the vector nature of the transition moment as expressed
through its transition from body-fixed to space-fixed compo-
nents), the expression for the state prepared in the absorption
process becomes

D@y prepared= ¢‘e*)(q;R)R*Zxo,a,y(R)(—l)M*Q' x

. 12 I 1 J
[T + 1)(21 + 1)] (—Q’ o O X
J 1 J\(2) +1\12
M 0 M ? Dé’,m(%qu)) (10)

In this equation the (spherical basis) componenbf the
transition moment is determined by the value$o&nd Q' for

the participating electronic statep:= 0 for parallel transitions
andp = +1 or —1, depending on whethé€?' = Q + 1 or Q'

= Q — 1, respectively, for perpendicular transitio§s nd 2’

are by convention nonnegative numbers). In any event, only a
single componenp will play a role in the transition between
any two specified electronic stat&sIn eq 10, thel dependence

of x047(RT) has been suppressed. It is understood Thist
much longer than the travel time of the wave packet through
the region where the potential is significant, in which case the
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result does not depend significantly @n The quantities

(J’ 13 )
-M 0 M
etc., are Wigner j3symbols.

The angular distribution of atoms at a detector very far from
the interaction region is obtained for eat&ndM by calculating
the flux density —iA[W*(dW/oR) — W(0W*/oR)] for ¥ the
Dex preparecOf €0 10. The quantity must then be averaged over
a uniform (isotropic) distribution oM’s to get the observed
angular distribution for the given initial value Jf

R L A S I I
vd JgM -Q p QN\-Q p Q
J; 1 J)d 1 J
(—M 0 M) M 0 M (23, + 1)(2, + 1)fy fy x
Jr Iz
G 1 u o
expl > 5 + 1y, = 1,,)|Dam Daim (11)

This can be simplified by the following two identitié314
Dié',M D:}J'Z,MZ
J J J J
Z(2K+1)(g;, 2 g)(l\j 2 g)PK(cose)
(12)
J J K\(J 1 J
MY 2 1
%( & (M M O)(—M 0 M)X
J 1 JL)_, yK 1 1)/K 1 1
(—M 0 M)_( Do o ols 3, 3] @

The quantity in curly brackets is the Wigngr€/mbol andPx
is the Legendre polynomial of ord&. Introducing these into
the result of eq 11 yields

0,9= Z(ZK + 1)(—1)“](5 é é)PK(cose) X

(I 7
Z (23, + 1)(23, + D)f, £y exi ? — oy || %

2

@ K 1 1 Jl Jz K \]1 1 J

1) {J 3 Jz}(g' “o ofl-e p o)
L o1
R Ne)

Because of the appearance of thesgmbol

K 1 1
0O 0 O
in this expression, only, (=1) and P, terms appear in the

angular distribution of the photoproducts, giving the familiar
result that

0,4(6) = 0, + 0, P,(c0s) = g} |1 + P,(cosB)] (15)
with 2 = g = —1. This simple form is the result of averaging

over an isotropic initial distribution in the magnetic quantum
numberM. Photodissociation from an ensemble with a noniso-
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Figure 1. Sketch of trajectory of a projectile atom (small circle)
scattering from a stationary target atom (large circle). The dashed line
slanting from lower left to upper right is the trajectory in the absence
of any interaction between the two atoms. The dashed line slanting
from upper left to lower right indicates the asymptote of the actual
trajectory. The angle between these two dashed lines is,as indicated,
the deflection functionsc. If, instead of asking how much the trajectory
has been deflected from an unimpeded straight line, we ask how much
the diatomic system has rotated during this collision, the answer is

— xsca This is twice the angle we have defined in the textas. As
shown in the figure, the system rotat@g;; in the first half of the
collision and anotheé,q, in the second half. In a photodissociation,
the trajectory initiates at the configuration in which the atoms are shown
in the figure, and the amount of rotation from the initial orientation of
the molecule ioone o .

tropic distribution ofM’s could lead to a far more complex
angular distribution.

All the interesting information about photodissociation dy-
namics is contained in the paramefer As shown in Zare’s
original work, the prediction from classical mechanics for
negligible rotation of the molecule during the dissociation
process (pure axial recoil) 5= 2 for a parallel transition and
B = —1 for a perpendicular transitich.This classical analysis
was also extended to provide a correction for the finite rotation
of the system during the dissociation in terms of an angle
designated admax by Zaré but which we will call 6,0t (see
Figure 1):

ﬂcorrectedz ﬂOPZ(Coserot,J) (16)

where 3 is the appropriate uncorrected valu¢2 or —1,
respectively, for parallel or perpendicular transitions). Of
course Seorrecteddepends od through theJ-dependence dq .

Equation 14 is the most general expression possible for the
angular distribution of photoproducts under the very general
assumptions stated (Bort©ppenheimer approximation, etc.).
All effects such as finite lifetime relative to rotation time must
be somehow expressible in the relative values of the different
fy and in the phase shifts.

Because of the
J K
Q  —-Q 0

term in eq 14, there are no cross terms between P, Q, and R
transitions inoS’J. In general,oiJ has cross terms involving
the phase shifts. These cross terms will be proportional to cos-
(Jol2 — wl2 + ny, — n3,). It is expedient at this point to
make a further approximation:

13, — M3, ~ (3 = Jp)(97,/9J) 17)

1

so that the argument of the cosine in the cross terms becomes
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(J1 — J2)(9n4/0d — (7/2)). We further introduce the semiclas- 1
sical relation between thé derivative of the phase shift and ;= 2P,(C0SO,qj)|1 — ————= +
_ ; rivath 23+ 1)
the classical deflection functiopy:
4Q% — 4Q% 2P + 21+ 1)
%= 2(3n,/33) (18) JO+ 1)(2 + 1)
6P, (COS0,4 ) QP + I — Q7

As shown in Figure 1y, is the angle ofdeflectionin the i(cos ““Z'J) ( - )+ 2 -
atomic collision at an impact parameter appropriate to the JU+1) (2+1)
value ofJ. The angle ofotation of the diatomic system in the 2Q%(4P + 43— 1) 2Q%8F +8I+3)

(21)

course of this full collision event i — y;, and this is twice > > > >
the angle of rotation of the diatom in the “half-collision” of a JI+DE@+1) JE+1)(@3+1)
photodissociation, the angle we have callbgly! Hence, a  The |eading term is exactly Zare’s expression for the anisotropy
semiclassical connection has been made between scatteringarameter for a parallel transition, including his correction for
theory and the phase of the cos in the cross ternag jn The finite rotation of the molecule during the dissociation. Since
P—Q and Q-R cross terms imiJ will be proportional to Q is usually much smaller than a typichlthe remaining terms
c0SProty) = P1(frory). The P-R cross term will be propor-  areO(J~2) or higher.

tional to cos(B.tj), which can be expressed as R(cos Alternatively, we can express the anisotropy parameter as a
Ororg) — 1]/3. series in the parametéx and in 1/(3 + 1). This yields the

The dependence d§ on J' cannot be expected to have an following results:
analog in scattering theory. It is determined by the asymptotic

behavior of the half-Fourier transforms of three wave packets B, = 2P,(cosb,,, ) + w — A2(4p2 —1)+
moving under slightly different effective potentials. These, in ’ 2+1

turn, are dependent on the shape of the product of the initial ;[_ 8Q% + 2 + 24Q%P, — (16Q% + 2)P,] +
vibrational wave function and the transition moment, not 23+ 1y !

scattering quantities. The expressions can be simplified, how- A2

ever, by approximating th& dependence df by the first two —2[—492 — 9 — 24Q°P, + (40Q° +

terms in a power series abalit=J. In that case, without loss (2+1) .

of generality as far as the shape of the angular distribution is A A
concerned, we can tafle= 1 — A, fo = 1,fr = 1 + A, where 12)P,] +©O (23 + 1)} * (23 +1) (22)
foA = (8f/8J)q.

specializing to either a parallel or a perpendicular transition. When the transition moment is perpendicular to the inter-
nuclear axis, the indeyp of eq 14 has the value 1 orl,
IV. Angular Distributions for a Parallel Transition according to whethe®' = Q + 1 orQ' = Q —1, respectively.
We will treat only thep = 1 case here. The general expressions
For a parallel transition for ¢°, ando?, are
o (P -Q) Q% G+ 17 - Q7 agy o= 70— QQU-Q—1) . iU - QU+ Q+1)
WT3)(23+1) 330+ 1) 30+ 1)(RI+1) 6J(2)+1) 6JJ + 1)

fO+Q+1)J+Q+2)

7= f 2% — QI — J—3Q9 N 60+ D@+ 1) (23)
' 33423 + 1)
fo Q%" + 3 - 30Q% , - QU-Q-DF-I-3Q@+17]
3743 + 172 i 65721 + 1Y
R0+ 1° — @I+ )3 +2) —3Q%)] @ — QU+ Q+ 1[I +I-3Q + 1) .
30+ 1)%(23+ 1) 6J°(J + 1)?
2fF1(3 — QA[(I + 1 — Q)] f20+Q+ 10+ Q+2) (P +31-3Q°—6Q — 1) .
3J(J + 1)(2 + 1) 6(J + 1)°(2] + 1)
292P1(0059r0t,3)|.fpr(~]2 _ Qz) fofl(3+ 1)2 _ Qz] fofg@— Q- 1) — Q)+ Q -1—21)(J +Q+2) N
JO+ 1)1+ 1)l J J+1 30+ 1)(2+ 1)
81 (2 — QA[(J+ 1) — OF Py(c0s0, )i + R+ DQ + NI - QI -2 - 1)
P,(C0S6,0 ) ] (20) JU+ D)@+ 1) B
3+ 1)(2+1) RO+Q+2)]

J+1

. . 2 0 ..
The asymmetry parametgt is the ratioo;, Jo, ;. This is a AP,(C0S6, Niefad + Q@+ DI+ Q +2)0 - QI - Q — 1)

distressingly complex expression in its full generality. It
simplifies greatly, however, if all the amplitudes are assumed 3J(J+ 1)(2) + 1)
to be equal. In that case, we obtain (24)
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This completely general expression for thegparameter is guestions asked about the angular distribution are posed in the
even more complicated in form than in the case of the parallel asymptotic region, very far from the region of interaction. In
transition. As previously, approximatirfg, fo, andfrz as 1— that limit these two coordinate systems coincide. For polyatomic
A 1, and 1+ A leads to a series expansion in powerg\aind molecules this simplification is not possible. However, our
inverse powers of (2+ 1) with relatively simple leading terms:  recovery of Zare’s correction for rotation during dissociation
in the diatomic case lends strong support for the use of his

By = —P,(c0s0,y ;) + SAZP2 + ﬁ[S +2Q — correction formulas for polyatomic molecules. Section Il is also
relevant to polyatomics. The state of a polyatomic molecule

6P,(Q + 1) + P,(4Q + 3)] + ;2[492 + 80 + that is prepared in a photodissociation is again the half-Fourier
23+ 1) transform of a wave packet, initially determined by the ground-

3-12@Q + 1)2P1 + (892 +16Q + 9)P,] + state ro-vibrational wave function, and propagated by the

) Hamiltonian of the electronically excited state. As in the case

A [_1092 — 200 — 9+ 6(592 +9Q + 4)P, — of the diatomic molecule, this prepared state@ one of the

(23 + 1)2 ! stationary continuum states for that Hamiltonian. In the case
4 A A8 of the diatomic, we have seen that the angular distribution, at
(2692 + 46Q + —5)P2] + O( 3) ( ) least to the lowest order in our expansion, is determined by the

2 (23+1) (23+1) location of the transition moment in the body-fixed axis system

(25) and by the scattering phase shifts. It is not likely that a similar
result will follow in terms of the S-matrix for scattering of the
products in the electronically excited state. The transformed
wave packet will produce S-matrix-like quantities that give the
fluxes into various channels in the photodissociation. However,
the actual S-matrix is designed to give the outgoing fluxes in
different channels when the incoming fluxes are determined by
incoming scattering conditionapt by mapping onto boundary
conditions in the interaction region determined by the shape of
the ground-state vibrational wave function. Knowing only the

In this paper, we have not attempted to treatdlparameter  S-matrix elements (which describe the incoming and outgoing
for excitation of a thermal distribution of rotational levels. To fluxes in the asymptotic region only) does not provide enough
accomplish this, one would have to average the expressions ininformation in itself for satisfying these spectroscopic boundary
egs 19 and 20 over a Boltzman distribution, a task complicated conditions.
by the presence of they(cos 8yot3) and P(Cos yt3) terms.

For a specificJ, we have established a semiclassical con-  Acknowledgment. This work was supported by the Robert
nection between the classical correction for rotation of the A.Welch Foundation and by National Science Foundation Grant
system during the half-collision. This correction factes(cos CHE-9528248.

Orot3), Will be unity when the rotation angle is near zero. This
will typically occur for the smallest values df for which the References and Notes
classical deflection function is near i.e., when the phase shifts

WhenP; or P, appears without explicit argument, the argument
is understood to béot.

As in the case of the parallel transition, the leading term of
this expansion recaptures the classical result of Zare, including
the correction for rotation of the molecule during the dissocia-
tion.
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